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Abstract 33 

Between 2003 and 2017, at least 706 southern right whale (Eubalaena australis) calves 34 

died at the Península Valdés calving ground in Argentina. Pathogenic microbes are often 35 

suggested to be the cause of stranding events in cetaceans; however, to date there is no 36 

evidence supporting bacterial infections as a leading cause of right whale calf deaths in 37 

Argentina. We used high-throughput sequencing and culture methods to characterize the 38 

bacterial communities and to detect potential pathogens from the intestine of stranded 39 

calves. We analyzed small and large intestinal contents from 44 dead calves that stranded 40 

at Península Valdés from 2005-2010 and found 108 bacterial genera, most identified as 41 

Firmicutes or Bacteroidetes, and 9 genera that have been previously implicated in 42 

diseases of marine mammals. Only one operational taxonomic unit was present in all 43 

samples and identified as Clostridium perfringens type A. PCR results showed that all C. 44 

perfringens isolates (n=38) were positive for alpha, 50% for beta 2 (n=19) and 47% for 45 

enterotoxin (CPE) genes (n=18). The latter is associated with food-poisoning and 46 

gastrointestinal diseases in humans and possibly other animals. The prevalence of the cpe 47 

gene found in the Valdés’ calves is unusually high compared with other mammals. 48 

However, insufficient histologic evidence of gastrointestinal inflammation or necrosis 49 

(the latter possibly masked by autolysis) in the gut of stranded calves, and absence of 50 

enterotoxin detection precludes conclusions about the role of C. perfringens in calf 51 

deaths. Further work is required to determine whether C. perfringens or other pathogens 52 

detected in this study are causative agents of calf deaths at Península Valdés. 53 

 54 

 55 

 56 

 57 
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1. Introduction 58 

Animals maintain intimate associations with communities of microbes residing in 59 

their gastrointestinal tracts [1]. These microbes can influence energy balance [2], immune 60 

function [3-5], and even the behavior [6] of their hosts. While microbial communities are 61 

gaining considerable attention in many natural systems, they remain poorly characterized 62 

and understood in cetaceans, with most studies focusing on the taxonomic composition of 63 

the cetacean microbiota [7-9] or the functionality of these bacterial communities [10,11]. 64 

Over the past decade, southern right whale calves (Eubalaena australis) 65 

experienced unusually high mortality on their calving ground off Península Valdés, 66 

southern Argentina [12,13]. From 2003 to 2017, we recorded 706 calf deaths with nearly 67 

half occurring between 2005 and 2010 (n=331). Many potential causes for these calf 68 

mortalities have been investigated, but a common cause has yet to be identified.  69 

Pathogenic microbes are often implicated in large stranding events in cetaceans 70 

[14-17]. However, to date no evidence has been found to support such hypotheses in the 71 

southern right whales off Argentina [18]. Our understanding of the bacterial communities 72 

that reside in stranded whales is also limited [10,11,14,19,20]. Sequencing-based 73 

approaches combined with culture-dependent methods of inventorying microbes have the 74 

potential to identify pathogenic microbes hosted by stranded dead whales. 75 

The aim of this study was to characterize the bacterial communities in the 76 

intestines of dead southern right whale calves, and to investigate the presence of potential 77 

pathogens that could be associated to their deaths. We first characterized the 78 

microbiomes of southern right whale calves, and then we investigated several host factors 79 

(post-mortem decomposition, phylogenetic clades, sex, stranding location, year and age) 80 
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that might influence gut bacterial communities. As these samples were collected from 81 

dead animals, investigations of bacterial community structure may be uninformative 82 

since relative abundances may not reflect those in living calves. Thus, we only 83 

investigated presence of species, and species richness. We then screened for potential 84 

pathogens, with a focus on bacterial genera that have previously been implicated in 85 

diseases of marine mammals. Additionally, we searched for microbes that were present in 86 

all samples, as these could be causative agents of repeated stranding events. Lastly, we 87 

conducted genetic testing to investigate the potential virulence of detected microbes and 88 

searched for lesions in the intestine and other organs of the stranded calves that could be 89 

caused by bacterial pathogens.  90 

 91 

2. Materials and methods 92 

 Experimental design  93 

Content from the small (n=18) and large (n=26) intestine was collected from a 94 

total of 44 stranded southern right whale calves that died in the two gulfs of Península 95 

Valdés (Golfo San José and Golfo Nuevo, 42°64′S 64°55′W) from 2005-2010. We only 96 

analyzed one sample (duodenum or distal third of large intestine) per whale. All samples 97 

were aseptically collected from the intestine as soon as the whale carcasses were opened; 98 

thus, we are confident that we inventoried the bacterial communities of the southern right 99 

whale intestine, and not of environmental sources. Approximately 1-5 gr of intestinal 100 

content was collected into sterile tubes and immediately preserved in liquid nitrogen then 101 

at -79 °C until analyzed. Individuals of both sexes in various states of postmortem 102 

decomposition (Table 1, [21]) were included in this study. Age ranged from newborn (1 103 
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day to 2 weeks) to 3-4 month [18]. Given this age range, there is a strong likelihood that 104 

these animals were exclusively nursing at the time of death [22].  105 

 We investigated associations between the prevalence of bacterial genera and host 106 

factors (post-mortem decomposition, phylogenetic clade, sex, age, stranding location and 107 

year; Table 1) for bacterial genera that were detected in ≥10% of samples. Genetic 108 

influences were identified as belonging to whales in either phylogenetic Clade A or W 109 

using data provided by Valenzuela for 40 of the 44 individuals analyzed ([23], 110 

Valenzuela L.O. unpublished data, Table 1). The effect of geography was investigated by 111 

comparing whales found dead at either Golfo San José or Golfo Nuevo. The state of post-112 

mortem decomposition was classified as fresh, moderate or advanced [21]. Additionally, 113 

calf total length (snout tip to fluke notch) was measured and used as a proxy for age, with 114 

small calves (up to 5.99 m, n=34) being considered younger than larger calves (≥6 m, 115 

n=11) [18,24].  116 

Bacterial inventory  117 

Bacterial DNA was extracted from all samples using a QIAamp DNA Stool Mini 118 

Kit (Qiagen, Germantown, MD) and sent to Argonne National Laboratories (Illinois, 119 

USA) for sequencing. Inventories of bacterial genera were conducted by amplifying the 120 

V4 region of the 16S rRNA gene using primers 515F and 806R, and paired-end 121 

sequencing was conducted on an Illumina MiSeq platform. Sequences were analyzed 122 

using the QIIME software package [25]. Sequences were grouped into operational 123 

taxonomic units (OTUs) if they shared greater than 97% sequence identity. OTUs were 124 

classified using the Ribosomal Database Project classifier with a minimum support 125 

threshold of 80%. We measured estimated species richness (Chao1) using 20 rarefactions 126 
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of 19000 sequences per sample, thus controlling for different sequencing effort between 127 

samples. All sequences were deposited in NCBI’s Sequence Read Archive under 128 

accession PRJNA421279. 129 

 Analysis of potential pathogens and Clostridium perfringens 130 

We targeted potential bacterial pathogens belonging to genera that had been 131 

previously implicated in disease of marine mammals [16,17,26]. We then looked for 132 

OTUs that were shared by all samples as possible pathogens. The single OTU that was 133 

present in all intestinal samples was Clostridium perfringens. To investigate whether this 134 

was unique to dead whale calves, we obtained sequencing data of intestinal samples from 135 

healthy adult North Atlantic right whales (Eubalaena glacialis; [10]) and tested for the 136 

presence of this OTU in the data.  137 

Clostridium perfringens is currently classified into seven toxinotypes based on the 138 

production of six typing toxins, i.e. alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), 139 

enterotoxin (CPE), and necrotic enteritis B-like (NetB) [27]. In addition, some C. 140 

perfringens isolates also produce several other toxins such as beta-2 toxin (CPB2), which 141 

are not used for toxinotyping [27]. We typed isolates of C. perfringens present in the gut 142 

of southern right whale calves (except for NetB, which, to our knowledge, has only been 143 

foundin poultry and not in mammalian species) [28]. After homogenization, we cultured 144 

all intestinal samples (both with and without heat shock by plating them directly onto 145 

tryptose sulfite cycloserine (TSC) agar plates made of SFP agar base (Becton-Dickinson) 146 

with 0.04% D-cycloserine (Sigma-Aldrich), a selective medium for C. perfringens. Two 147 

different PCR reactions were run on C. perfringens isolates, one was used to detect the 148 

cpa, cpb, etx, iap, and cpb2 genes, and the other to analyze the cpe gene, as previously 149 
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described [27]. All oligonucleotide primers used in this study [27] were purchased from 150 

Integrated DNA Technologies (IDT). PCR reactions were performed using 1 µl of DNA 151 

in a final volume of 50 µl.  152 

The multiplex PCR program was run in a Peltier Thermal Cycler PTC-100™ (MJ 153 

Research), with initial denaturation at 95°C for 15 min, followed by 35 cycles of 30 s at 154 

94°C, 90 s at 55°C and 90 s at 72°C (denaturation, annealing and extension phases, 155 

respectively), followed by a final extension cycle for 10 min at 72°C. Five microliters of 156 

the PCR products were separated by electrophoresis on a 1% (w/v) agarose gel (Agarose 157 

SFR™ Super Fine Resolution, AMRESCO®, code J234-25G), stained with 0.2 µg/ml of 158 

ethidium bromide (AMRESCO®, code X328-10ML) for 20-30 min at 110V and 159 

visualized by UV transillumination. The length of the amplification product of the 160 

multiplex PCR could be easily discriminated in this gel because of a size difference of at 161 

least 52 bp and compared to a molecular weight marker (Amplisize® Molecular Ruler, 162 

50-2,000 bp Ladder, Cat. # 170-8200, Bio-Rad). DNA from two C. perfringens reference 163 

strains (types B and E, respectively) both cpb2 and cpe positive, were used as controls. 164 

To determine the presence of enterotoxin (CPE) in the gut of stranded calves, 165 

intestinal contents from all the animals were tested by a commercial ELISA, according to 166 

the instructions of the manufacturer (Techlab, Blacksburg, VA). 167 

Histological analysis 168 

Samples collected from the small or the large intestine of dead calves were fixed 169 

in 10% buffered (pH 7.2) formalin and processed using routine methods for histologic 170 

examination [18]. Briefly, they were embedded in paraffin wax, sectioned at 5 μm, and 171 
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stained with hematoxylin and eosin (HE). Additional samples collected from other organs 172 

were also examined histologically (Table 1).  173 

Statistical analysis 174 

To determine whether the prevalence of bacterial members differed among 175 

decomposition state, phylogenetic clades, sex, stranding location, year and age (aka 176 

whale body length), we used Chi-square analysis using the presence or absence of each 177 

genus. T-tests and linear regression were applied to test whether the estimated species 178 

richness varied between state of decomposition, phylogenetic clades, sex, stranding sites, 179 

and year. We also used linear regression to test whether species richness varied in 180 

relation to the age using state of decomposition as a covariate. These tests were 181 

conducted either for the small or the large intestine, but the bacterial composition and 182 

richness of both segments was not compared against each other. All statistical analyses 183 

were conducted in JMP 12.0. 184 

 185 

3. Results 186 

 Presence of bacterial species 187 

We analyzed 18 small intestine samples and 26 large intestine samples from 44 188 

calves. Sequencing efforts resulted in an average of 44,836 ± 3518 sequences per sample.  189 

These sequences were assigned to 22,106 OTUs at 97% sequence identity. Most bacterial 190 

sequences were identified as Firmicutes or Bacteroidetes. We documented the presence 191 

of 108 bacterial genera residing in the gastrointestinal tract of stranded right whale calves 192 

(Supplementary files: Table S1). In whales in advanced state of post-mortem 193 

decomposition, the prevalence of Erysipelothrix in the large intestine was higher (P = 194 
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0.028), while the prevalence of Cetobacterium in the small intestine was lower (P = 195 

0.032). There were no host clade-specific genera from either small or large intestinal 196 

samples, suggesting that the two major phylogenetic clades of whales share similar 197 

microbiotas. There were also no differences in the bacterial genera hosted by males 198 

versus females.  199 

We detected several possible geographic site-specific genera. Allobaculum was 200 

more prevalent in the large intestine samples collected from Golfo San José (P = 0.004). 201 

Oscillospira was specific to the small intestine of whales from Golfo Nuevo (P = 0.018), 202 

and Sarcina was more prevalent in the small intestines of whales from Golfo San José (P 203 

= 0.022).  204 

Five genera decreased in prevalence over the duration of this study. Dorea and 205 

Prevotella were more prevalent in 2005-2007, Bifidobacterium and Oscillospira in 2005-206 

2008, and Erysipelothrix in 2007. The genus Sarcina increased in prevalence in 2009-207 

2010. The genera Bifidobacterium, Desulfovibrio, Dorea, Eggerthella, Erysipelothrix, 208 

Oscillospira, Peptococcus, Prevotella, Proteus, Sutterella, and Treponema were all more 209 

prevalent in the large intestine of older calves (those ≥6 m) compared to younger calves 210 

(P < 0.05 for all). Young calves did not exhibit higher prevalence of any microbes, and 211 

there were no age-related differences in small intestine prevalences. 212 

Species richness 213 

There were no associations between species richness and state of post-mortem 214 

decomposition, whale clade, sex, stranding location, or year. However, older calves 215 

hosted more bacterial species. There were significant correlations between calf age 216 

(length) and species richness in both the small intestine (Fig. 1A; F1,16 = 5.89, P = 0.027, 217 



 10

R2 = 0.27) and large intestine (Fig. 1B; F1,25 = 7.98, P = 0.009, R2 = 0.25). We 218 

investigated decomposition state as a covariate, but it was not significant, so it was 219 

removed from the final models.  220 

Pathogen identification and Clostridium perfringens 221 

We identified 9 bacterial genera that have been previously implicated in marine 222 

mammal disease: Erysipelothrix, Escherichia, Helicobacter, Pseudomonas, Mycoplasma, 223 

Clostridium, Streptococcus, Corynebacterium and Pasteurella (Supplementary files: 224 

Table S1; [16,25]. Clostridium perfringens was the only OTU present in all samples. C. 225 

perfringens was isolated from most of the intestinal samples cultured (39 of 44). This 226 

OTU was also detected in sequencing data of intestinal samples from healthy adult North 227 

Atlantic right whales. All isolates were identified as C. perfringens type A and F. All 228 

intestinal samples were PCR positive for the cpa gene, 46% for cpb2 (n=18) and 44% for 229 

cpe (n=17) (Supplementary files: Fig. S1). ELISA testing for CPE was negative in the 230 

intestinal content of all 44 calves. 231 

Histopathology 232 

Samples were available for histologic review from 34 of the 44 whales. These 233 

included: intestinal tissue (n=20; 9 small intestine; 7 large intestine; 9 intestine [not 234 

further categorized due to autolysis]), and numerous other tissues (n=34; 24 skeletal 235 

muscle; 23 lung, kidney; 20 skin; 10 heart; 15 liver; 13 spleen; 12 brain, 12 testis; 10 236 

lymph node, stomach; 9 bone marrow; 8 connective tissue; 7 urinary bladder, pancreas, 237 

artery, baleen; 6 tongue, esophagus; 5 thymus, ovary, penis, epididymis; 4 urethra; 3 238 

cartilage; 2 trachea, adrenal gland, peripheral nerve, uterus, vagina, umbilicus; 1 gall 239 

bladder, bone, spinal cord, cervix). In 5 cases only skin (4) or skin, muscle and baleen (1) 240 
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were available. Excluding these 5 cases, autolysis was mild to moderate in 10 whales, 241 

moderate to severe in 11, and severe in 8. Changes of varied significance were observed 242 

in the brain of 3 whales, the lung of 9, liver and/or spleen of 3, gastrointestinal tract 243 

(small intestine and esophagus) of 2, lymph node of 1, and other (umbilicus, artery 244 

thrombosis) in 3. One calf (4.1m long, 2010 death) had mild multifocal neutrophilic and 245 

lymphoplasmacytic enteritis with multifocal large clear spaces suggestive of gas 246 

formation and/or edema. The small intestinal content of this calf was positive for the C. 247 

perfringens cpe toxin gene, as well as for Streptococcus and E. coli. A second calf (4.96m 248 

long, 2010 death) had moderate, regionally extensive mural esophagitis. Autolysis in the 249 

small intestine of this calf was moderate to severe; large intestine was not available for 250 

histologic review. Mixed bacteria (Corynebacterium, Pasteurella, Streptococcus, E. coli) 251 

were found in its intestinal tract including C. perfringens that was positive for the cpe 252 

toxin gene. A third calf (5.05m long, 2009 death) had mild to moderate multifocal non-253 

suppurative meningitis. Intestinal samples were not available for histologic review, but E. 254 

coli and C. perfringens positive for the cpe toxin gene were found in its intestine. No 255 

other significant microscopic abnormalities were observed in any of the other samples 256 

examined.  257 

 258 

5. Discussion 259 

This is the first reported characterization of the bacterial communities that live 260 

within the intestines of baleen whale calves and one of the few to characterize potential 261 

pathogenic bacteria in stranded whale carcasses.  262 
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 The bacterial communities in stranded southern right whale calves were 263 

represented by different genera that show similarities to the microbiomes described for 264 

other cetaceans. Most bacterial sequences were identified as Firmicutes or Bacteroidetes, 265 

which are the dominant phyla in other mammalian species [29-32], including cetaceans 266 

[10,11,33-35]. For example, the clade 5 Verrucomicrobia and the genus Treponema were 267 

found in the gut of both southern right and North Atlantic right whales. Verrucomicrobia 268 

is more abundant in mammals whose diets contain fermentable animal polysaccharides 269 

(such as chitinous zooplankton) [10].  270 

Southern right whale calf microbiomes shared some similarities with the bacterial 271 

taxonomic groups found in a bottlenose dolphin calf (Tursiops truncatus). Both species 272 

shared several bacterial families, including Clostridiaceae, Peptostreptococcaceae, 273 

Ruminococcaceae, Enterococcaceae, Streptococcaceae, Prevotellaceae and 274 

Sphingomonadaceae. These bacterial families were also present in bottlenose dolphin 275 

maternal milk suggesting milk influences the calf’s microbiota [35]. In southern right 276 

whale calves, maternal milk is most likely the only source of energy during the first three 277 

months of life at their calving ground in Península Valdés [22] and probably is an 278 

important source of bacteria. Accordingly, we found Bifidobacterium in 34% of the 279 

examined calves. This genus is known to play a role in digesting milk oligosaccharides 280 

[36], which are in especially high abundance in the milk of cetaceans [37-38]. 281 

Our inventories of bacterial genera also documented commensal or beneficial 282 

microbes, such as Oscillospira, in the guts of whale calves. The functional capabilities of 283 

Oscillospira are unknown, but it likely plays a role in fiber fermentation due to its 284 

presence in numerous rumen systems and its greater abundance when hosts are fed fiber 285 
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[39]. The functional roles of these bacterial genera in southern right whales is currently 286 

unknown. Also unknown is whether their presence or absence influences host fitness.   287 

 Our data suggest that there is no association between host phylogenetic clade, 288 

location, sex and post-mortem decomposition, with the bacterial community structures of 289 

southern right whale calves. Evidence to date indicates that post-mortem decomposition 290 

is not an important structuring factor for mammal microbiomes, including studies on 291 

mice [40] and two species of kogiid whales [11]. Bacterial community structure remains 292 

largely unchanged, at least in the early stages of decomposition or before intestinal 293 

rupture occurs and the gut microbiota is exposed to aerobic conditions [40]. Other studies 294 

have also shown that sex has no significant effect on marine mammal microbiomes [8,11, 295 

30,32] if the species do not display sexual size dimorphism [41]. 296 

In contrast, calf microbiome varied with year of stranding. Non-pathogenic 297 

bacteria, such as Dorea, Prevotella Bifidobacterium and Oscillospira were more 298 

prevalent in early study years; however, the genus Sarcina were more prevalent in later 299 

years. Bifidobacterium perform important degradation of milk oligosaccharides [36]. 300 

Both Oscillospira and Prevotella are regularly found in ruminants [42,43], and are 301 

thought to degrade complex carbohydrates. High abundances of Oscillospira are 302 

associated with feeding on fresh forage [42], and so may play a role in fiber degradation. 303 

Prevotella are non-cellulolytic, and instead degrade xylans [44]. While it is unclear what 304 

carbohydrates these genera might be degrading in the guts of whale calves, previous 305 

studies have demonstrated that whales tend to have some similarities to herbivores in 306 

terms of bacterial community structure [10]. 307 
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Calf age largely determined the bacterial community composition of right whale 308 

calves. Microbiota composition changed with growth in a breast-fed bottlenose dolphin 309 

calf from birth to 5-8 months of age and was probably due to nursing [35]. Southern right 310 

whale calves in the Valdés population are on average 5.5 m long at birth and grow as 311 

much as three meters during their first months of life at their calving ground [18,24]. 312 

Differences in the bacterial community composition between young (<6 m) and older 313 

calves (≥6 m) might be due to nursing, which has been demonstrated for terrestrial 314 

mammals [45]. In addition, infant humans and avian chicks exhibit increases in bacterial 315 

diversity during ontogeny, which converge in adult-like communities [46,47]. This shift 316 

is thought to be due to incidental exposure to environmental microbes that colonize the 317 

gastrointestinal tract [46]. Our study only investigated the bacterial communities of 318 

southern right whale calves; further studies are needed to characterize communities of 319 

adults as well.  320 

 The genera Bilophila, Peptococcus, and Treponema were only found in the large 321 

intestine of older calves (those ≥ 6m). Small calves did not harbor any unique microbes. 322 

The abundance of Bilophila increases in response to dietary milk fats [48], and so may be 323 

more abundant in older calves due to greater milk intake. Peptococcus is rare in human 324 

children, but more abundant in adults [49]. Many other unidentified OTUs were present 325 

only in older calves, suggesting that the microbiota obtains new members as whales 326 

grow. 327 

Several potential pathogens were detected in the intestine of stranded southern 328 

right whale calves including the genera Mycoplasma, Streptococcus, Erysipelothrix and 329 

Clostridium. Mycoplasma spp. have been associated with high mortality events in marine 330 
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mammals, especially pinnipeds. Primary clinical diseases include pneumonia and septic 331 

polyarthritis [50-52]. In our study, Mycoplasma was present in the intestinal content of 332 

three calves. Several tissues (testis, skin, skeletal muscle, penis, kidney, liver and spleen) 333 

were available for histologic examination from only one and contained no lesions, 334 

suggesting this to be an incidental finding. Other cases, particularly those with 335 

pneumonia, should be analyzed to discard the role of this pathogen in right whale calf 336 

deaths at Valdés.  337 

Streptococcus spp. are known to produce pneumonia and septicemia in pinnipeds 338 

[16], and two cases have been reported in odontocetes, the harbour porpoise (Phocoena 339 

phocoena, [53]) and the pilot whale (Globicephala melaena, [54]). An apparent cause of 340 

death related to infections by Streptococcus was not evident in the dead calves analyzed 341 

in our study. Some species of Erysipelothrix can produce infections in odontocetes and 342 

mysticetes. For instance, Erysipelothrix rhusiopathiae can cause lethal septicemia [16,55] 343 

and has been found in skin lesions of southern right whales [56]. In this study, 344 

Erysipelothrix was almost exclusively found in calves that died in 2007, a high mortality 345 

year when most calves showed unusually severe skin lesions [57]. However, few samples 346 

were available for histologic examination and the role of this potential pathogen remains 347 

to be evaluated. Kelp gulls (Larus dominicanus) at Península Valdés feed on skin and 348 

blubber of living right whales opening wounds on their backs of different size and 349 

severity [58]. Fiorito et al. [56] reported E. rhusiopathiae in one living and one dead calf 350 

with particular rhomboid shaped gull-inflicted lesions. Although the origin of the 351 

bacterium is unknown, it could potentially be directly transmitted by gulls, constitute 352 
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normal skin microbiota, or be a direct or indirect (opportunistic infection in open 353 

wounds) pathogen. Our findings show that right whale guts are another potential source. 354 

Clostridium perfringens was the only OTU identified in all samples. This 355 

bacterium is found at high prevalence in healthy individuals of multiple mammalian and 356 

avian species [59], and its presence in carcasses, especially those in advanced stages of 357 

decomposition, is relatively common. Detection in 100% of the stranded southern right 358 

whale calves examined was not unexpected. The class Clostridia is well represented 359 

among three species of baleen whales, the North Atlantic right whale, the humpback 360 

whale (Megaptera novaeangliae) and the sei whale (Balaenoptera borealis) [10]. 361 

Clostridium perfringens has been also found in stranded pygmy (Kogia breviceps) and 362 

dwarf (K. sima) sperm whales [11]) and has been detected in healthy North Atlantic right 363 

whales [10]. The presence of C. perfringens in all carcasses analyzed for this study may 364 

be also explained by changes in the gut environment under post-mortem conditions. 365 

Some microbes opportunistically dominate the gut microbiome after death due to a 366 

decreased intestinal blood flow and an increased digesta retention [60,61].  367 

However, C. perfringens can also be a primary ante-mortem pathogen that causes 368 

disease in a broad variety of avian and mammalian species. This microorganism can 369 

produce a range of lethal toxins [62,63], and it has been associated with disease in several 370 

aquatic mammals including dolphins [64], sea otters [65], Weddell seals [66] and hooded 371 

seals [67]. Other Clostridium spp. can also affect marine mammals. These include C. 372 

septicum, which was associated with the death of two adult sperm whales (Physeter 373 

macrocephalus) in Denmark [20].  374 
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Pathogenicity of C. perfringens cannot be determined simply by its presence or 375 

detection [59]. In several mammalian species, pathogenicity must be confirmed based on 376 

gross and microscopic lesions, coupled with the presence of pre-formed toxins in the 377 

intestinal content. In several mammals, intestinal lesions caused by C. perfringens 378 

enterotoxin are characterized by necrosis and degeneration of the superficial epithelium, 379 

edema and congestion [68,69]. In whales, however, no diagnostic criteria for C. 380 

perfringens infections have been established. To date (2003-2017), enteritis or colitis has 381 

been identified histologically in only two stranded right whale calves at Península Valdés 382 

(n=39, [18]). Intestinal content from the calf with enteritis in the current study tested 383 

positive for C. perfringens cpe toxin gene, but was negative for toxin production. In 384 

addition, toxic changes (such as mucosal necrosis that can occur secondary to clostridial 385 

toxins) were not observed in intestinal samples from this or other calves, and obvious 386 

inflammation was not seen in other calves. However, histology may not be the most 387 

sensitive indicator of toxin production, especially in animals in moderate to advanced 388 

stages of autolysis since decomposition are known to occur rapidly in gastrointestinal 389 

tissues of dead mammals [70,71] and can mask subtle lesions. Pre-formed toxins were 390 

not detected in any dead calf. This finding may be because for CPE production, C. 391 

perfringens must sporulate in the gastrointestinal tract of the host [72]. We did not detect 392 

C. perfringens sporulation in dead southern right whale calves.  393 

We further investigated the presence of toxin genes in the microbiota samples 394 

from stranded calves. All cultured isolates of C. perfringens were identified as type A or 395 

type F. Clostridium perfringens type A is generally considered a commensal, non-396 

pathogenic toxinotype in the intestine of most animals [73]. In contrast, C. perfringens 397 
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type F producing enterotoxin, causes foodborne illness and gastrointestinal disease in 398 

humans [28,74,75], and has been associated with cases of enteritis or diarrhea in dogs and 399 

horses [58,76]. Nevertheless, its role in animal disease remains poorly understood [77]. 400 

The enterotoxin gene (cpe), was common in the gastrointestinal microbiota of southern 401 

right whale calves. The cpe gene was present in 44% of the cultured samples. This is a 402 

remarkable difference compared to only 5% prevalence of the global C. perfringens 403 

population [78,79]. Again, however, the low prevalence of gastrointestinal lesions and 404 

the absence of enterotoxin limits conclusions about the role of C. perfringens in calf 405 

deaths. Additional data from living healthy and sick whales will be necessary to evaluate 406 

the meaning of these findings. 407 

While we lack the evidence to attribute a role to C. perfringens in calf deaths, the 408 

high prevalence of the cpe gene is unusual when compared to other mammals. Moreover, 409 

some microbes that have been classified as ‘pathobionts’, or microbes that are normal 410 

members of the gut microbiota could induce disease under certain conditions, such as 411 

when hosts are stressed or immunocompromised [80]. Further work is required to 412 

determine whether C. perfringens or other possible pathogens reported in this study 413 

might be contributors to calf mortality at Península Valdés.  414 

 415 

 6. Conclusions  416 

 Our findings provide the first culture-independent inventory of bacterial genera in 417 

the gut of stranded baleen whale calves. We identified many commensal and beneficial 418 

bacterial species. We also identified several potential pathogens such as C. perfringens. 419 

Further work is required to determine whether C. perfringens or other pathogens detected 420 
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in this study are causative agents of calf deaths at Península Valdés. Our inventory also 421 

provides insight into the bacterial ecology of baleen whale calves. Further research 422 

related to the functions of various microbes within the calf gut is warranted.  423 
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Table 1. Number of dead calves studied in each category/factor. 732 

 733 

Factor/variables analyzed Number per category Total calves 

Age  34 young: 10 old calves 44 

Phylogenetic clade 19 clade A: 21 clade W 40 

State of decomposition 18 fresh: 17 moderate: 9 advanced 44 

Sex 

Intestinal content 

16 females: 27 males 

18 small: 26 large intestine 

43 

44 

Stranding location 33 Golfo Nuevo: 11 Golfo San José 44 

Stranding year 

 

Clostridium perfringens 

toxin genes 

4 in 2005:1 in 2006: 5 in 2007: 12 in 2008: 10 in 

2009: 12 in 2010 

39 each α-toxin,β2-toxin, cpe 

44 

 

39 

Histopathology 9 small intestine, 7 large intestine, 9 intestine (not 

further categorized due to autolysis) 

Additional tissues  

20 

 
 

34 
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Fig. 1. Bacterial richness in small (A) and large (B) intestine as a function of calf length. 744 

Longer calves exhibit higher bacterial richness in both intestinal sections. 745 
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